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CHAPTER 1

Introduction

1.1 WHY THIS BOOK?

“Things should be made as simple as possible but not a
bit simpler than that.”

Albert Einstein (Safir and Safire, 1982)

Finding the Einstein threshold of optimum simplicity was
a constant goal for the author when writing this book
(Figure 1.1). The first driving force for writing it was the
coming of age of unsaturated soil mechanics: There was a
need to introduce geotechnical engineering as dealing with
true three-phase soils while treating saturated soil as a special
case, rather than the other way around. The second driving
force was to cover as many geotechnical engineering topics
as reasonably possible in an introductory book, to show the
vast domain covered by geotechnical engineering and its
important contributions to society. Dams, bridges, buildings,
pavements, landfills, tunnels, and many other infrastructure
elements involve geotechnical engineering. The driving
force for the second edition was the desire to include case
histories to further demonstrate the considerable role played
by geotechnical engineers in society and also to update the
first edition. The intended audience is anyone who is starting
in the field of geotechnical engineering, including university
students.

Too complex

Threshold of
optimum simplicity

Too simple

Figure 1.1 Einstein threshold of optimum simplicity. (Source:
Photo by Ferdinand Schmutzer.)

1.2 GEOTECHNICAL ENGINEERING

Geotechnical engineering is a young (∼100 years) profes-
sional field dealing with soils within a few hundred meters
of a planet’s surface for the purpose of civil engineering
structures. For geotechnical engineers, soils can be defined as
loosely bound to unbound, naturally occurring materials that
cover the top few hundred meters of a planet. In contrast, rock
is a strongly bound, naturally occurring material found within
similar depths or deeper. At the boundary between soils and
rocks are intermediate geo-materials. The classification tests
and the range of properties described in this book help to
distinguish between these three types of naturally occurring
materials. Geotechnical engineers must make decisions in
the best interest of the public with respect to safety and eco-
nomy. Their decisions are related to topics such as:

• Foundations
• Slopes
• Retaining walls
• Dams
• Landfills
• Tunnels

These geotechnical structures or projects are subjected to
loads, which include:

• Loads from a structure
• Weight of a slope
• Push on a retaining wall
• Environmental loads, such as waves, wind, rivers, earth-

quakes, floods, droughts, and chemical changes, among
others

Note that current practice is based on testing an extremely
small portion of the soil or rock present in the project area.
A typical soil investigation might involve testing 0.0001%
of the soil that will provide the foundation support for the
structure. Yet, on the basis of this extremely limited data, the

1Geotechnical Engineering: Unsaturated and Saturated Soils, Second Edition. Jean-Louis Briaud.
© 2023 John Wiley & Sons, Inc. Published 2023 by John Wiley & Sons, Inc.
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Figure 1.2 A rendition of the geotechnical engineering world. (Source: Courtesy of Hayward Baker Inc.,
Geotechnical Contractor.)

geotechnical engineer must predict the behavior of the entire
heterogeneous mass of soil. This is why geotechnical engi-
neering is a very difficult discipline. Yet, as Terzaghi is said
to have noted, there is no glory in foundations. Indeed, most
of our work is buried (Figure 1.2). For example, everyone
knows the Eiffel Tower in Paris, but very few know about its
foundation.

1.3 THE PAST AND THE FUTURE

While it is commonly agreed that geotechnical engineering
started with the work of Karl Terzaghi at the beginning of
the 20th century, history is rich in instances where soils and
soils-related engineering played an important role in the
evolution of humankind (Kerisel, 1985; Peck, 1985; Skemp-
ton, 1985). In prehistoric times (before 3000 BC), soil was
used as a building material. In ancient times (3000–300 BC),
roads, canals, and bridges were very important to warriors.

In Roman times (300 BC–300 AD), structures started to become
larger and foundations could no longer be ignored. The
Middle Ages (AD 300–1400) were mainly a period of war,
in which structures became even heavier, including castles
and cathedrals with very thick walls. Severe settlements
and instabilities were experienced. The Renaissance (AD

1400–1650) was a period of enormous development in the
arts, and several great artists proved to be great engineers
as well. This was the case of Leonardo da Vinci and more
particularly Michelangelo. Modern times (AD 1650–1900)
saw significant engineering development, with a shift from
military engineering to civil engineering. In 1776, Charles
Coulomb developed his earth pressure theory, followed in
1855 by Henry Darcy and his seepage law. In 1857, William
Rankine proposed his own earth pressure theory, closely
followed by Carl Culman and his graphical earth pressure
solution. In 1882, Otto Mohr presented his stress theory and
the famous Mohr circle, and in 1885 Joseph Boussinesq pro-
vided the solution to an important elasticity problem for soils.
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1.4 GEOTECHNICAL ENGINEERING CAN BE FUN 3

From 1900 to 2000 was the true period of development of
modern geotechnical engineering, with the publication of
Karl Terzaghi’s book Erdbaumechanik (in 1925), which was
soon translated into English; new editions were co-authored
with Ralph Peck, beginning in 1948. The progress over
the past 50 years has been stunning, with advances in the
understanding of fundamental soil behavior and associated
soil models (e.g., unsaturated soils), numerical simulations
made possible by the computer revolution, the development of
large machines (e.g., drill rigs for bored piles), and a number
of ingenious ideas (e.g., reinforced earth walls, pile driving
analyzer, geosynthetics).

Geotechnical engineering has transcended the ages because
all structures built on or in a planet have to rest on a soil
or rock surface; as a result, the geotechnical engineer is
here to stay and will continue to be a very important part of
humanity’s evolution. The Tower of Pisa is one of the most
famous examples of a project that did not go as planned,
mostly because of the limited knowledge extant some 900
years ago. Today designing a proper foundation for the Tower
of Pisa is a very simple exercise, because of our progress.
One cannot help but project another 900 years ahead and
wonder what progress will have been made. Will we have:

• complete nonintrusive site investigation of the entire soil
volume?

• automated four-dimensional (4D) computer-generated
design by voice recognition and based on a target risk?

• tiny and easily installed instruments to monitor geotech-
nical structures?

• unmanned robotic machines working at great depth?

• significant development of the underground?
• extension of projects into the sea?
• soil structure interaction extended to thermal and mag-

netic engineering?
• failures down to a minimum?
• expert systems to optimize repair of defective geotechni-

cal engineering projects?
• geospace engineering of other planets?
• geotechnical engineers with advanced engineering judg-

ment taught in universities?
• no more lawyers, because of the drastic increase in

project reliability?

1.4 GEOTECHNICAL ENGINEERING CAN BE FUN

Geotechnical engineering can be fun and entertaining, as
the book by Elton (1999) on geo-magic demonstrates. Such
phenomena as the magic sand (watch this video: https://www
.stevespanglerscience.com/lab/experiments/magic-hydro
phobic-sand/), water going uphill, the surprisingly strong
sand pile (Figure 1.3e), the swelling clay pie (Figure 1.3d),
and the suddenly very stiff glove full of sand will puzzle
the uninitiated. Geotechnical engineering is seldom boring;
indeed: the complexity of soil deposits and soil behavior
can always surprise us with unanticipated results. The best
geotechnical engineering work will always include consider-
ations regarding geology, proper site characterization, sound
fundamental soil mechanics principles, advanced knowledge
of all the tools available, keen observation, and engineering

(a) (b) (c)

(d) (e)

Figure 1.3 Soil magic. (Source: Courtesy of David J. Elton.)

https://www.stevespanglerscience.com/lab/experiments/magic-hydrophobic-sand/
https://www.stevespanglerscience.com/lab/experiments/magic-hydrophobic-sand/
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judgment. The fact that geotechnical engineering is so com-
plex makes this field an unending discovery process, which
keeps the interest of its adepts over their lifetimes.

1.5 UNITS

In engineering, a number without units is usually worthless
and often dangerous. On this planet, the unit system most
commonly used in geotechnical engineering is the System
International or SI system. In the SI system, the unit of
mass is the kilogram (kg), which is defined as the mass of a
platinum-iridium international prototype kept at the Interna-
tional Bureau of Weights and Measures in Paris, France. On
Earth, the kilogram-mass weighs about the same as 10 small
apples. The unit of length is the meter, defined as the length
of the path traveled by light in a vacuum during a time interval
of 1/299,792,458 of a second. A meter is about the length of
a big step for an average human. The second is the duration
of 9,192,631,770 periods of the radiation corresponding to
the transition between the two hyperfine levels of the ground
state of the cesium 133 atom. Watches and clocks often have
a hand ticking off the seconds. The unit of temperature is the
Kelvin, defined as 1/273.16 of the difference in temperature
between the absolute zero and the triple point of water. The
degree Celsius (C) is also commonly used; it has the same
magnitude as the degree Kelvin but starts at ∼0∘C (∼273 K)
for the freezing point of water and uses ∼100∘C (∼373 K)
for the boiling point of water. There are seven fundamental
units in a unit system, but these four (kg, m, s, K) are the
most commonly used in geotechnical engineering. The other

fundamental units in the SI system are the mole (substance),
the candela (light), and the ampere (electricity).

Other geotechnical engineering units are derived from these
fundamental units. The unit of force is the Newton, which is
the force required to accelerate a mass of 1 kg to 1 m/s2.

1 N = 1 kg × 1 m∕s2 (1.1)

This force is about the weight of a small apple. Humans
typically weigh between 600 and 1000 N. Most often the
kilo-Newton (kN) is used rather than the Newton. The kilo-
gram force is the weight of one kilogram mass. On Earth, the
equation is:

1 kgf = 1 kg × 9.81 m∕s2 (1.2)

The unit of stress is the kN/m2, also called the kilo-Pascal
(kPa); there is about 20 kPa under your feet when you stand
on both feet. Note that a kilogram force is the weight of a
kilogram mass and depends on what planet you are on and
even where you are on Earth.

Accepted multiples of units, also called SI prefixes, are:

terra 1012

giga 109

mega 106

kilo 103

milli 10–3

micro 10–6

nano 10–9

pico 10–12

(An angstrom is 10–10 meter.)

Problems and Solutions

Problem 1.1

How would you decide if you have reached the threshold of optimum simplicity?

Solution 1.1

The threshold is not reached if:

• The solution seems too simple or too complicated.
• The solution is not used in practice.
• It costs too much time and money to obtain the solution.
• The solution leads to erroneous answers.
• The solution does not contain or address the essential elements of the problem.

The threshold is likely reached if:

• The solution seems reasonably simple and cannot be simplified further.
• The solution is used in practice.
• The cost of obtaining and implementing the solution is consistent with the budget of a large number of projects.
• The solution leads to reasonable answers.
• The solution is based on fundamental elements of the problem.




